Code No: 114AG

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year II Semester Examinations, December - 2018 FORMAL LANGUAGES AND AUTOMATA THEORY

(Computer Science and Engineering)

Time: 3 Hours Max. Marks: 75

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART-A

		(25 Marks)
1.a)	Define DFA.	[2]
b)	Design FA which accepts set of all strings ending with 00.	[3]
c)	Define Left linear Grammar.	[2]
d)	Give the regular expression for the language all string over	alphabet {0,1}
	containing at least two 0's.	[3]
e)	What is ambiguity in CFG?	[2]
f)	Write the context free grammar for the language $L=\{a^n b^{2n}/n \ge 1\}$	[3]
g)	Give Instantaneous description ID of Turing Machine.	[2]
h)	Define Type 0 Grammar.	[3]
i)	List any 2 NP Hard Problems.	[2]
j)	Define Turing reducibility.	[3]

PART-B

(50 Marks)

2.a) Convert the following NFA with € - moves to DFA shown in figure 1.

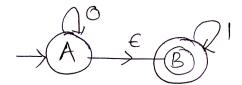
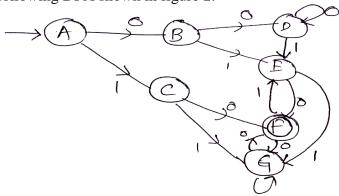



Figure: 1

b) Minimize the following DFA shown in figure 2. [5+5]

WWW.MANARE SULLIS.CO.IN

3.a) Check whether the following two Finite Automaton's are equivalent or not? Finite Automaton (FA) 1 (figure 3):

Figure: 3

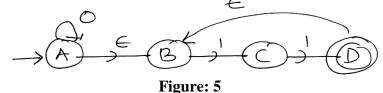

Finite Automaton (FA) 2(figure 4):

Figure: 4

b) Convert the following NFA with € moves to DFA in figure 5.

4. Construct an NFA for the following Regular expression:

[5+5]

OR

5.a) Find the regular grammar for the following Finite Automate shown in figure 6.

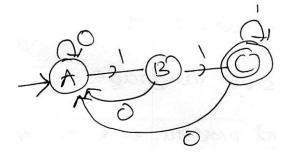


Figure: 6

b) Construct FA for the following regular expressions (0+1)*(1+00)(0+1)*. [5+5]

6.a) Convert the following grammar to Chomsky Normal Form

 $S \rightarrow ABA$

 $A \rightarrow aA \mid E$

B → bB | €

and simplify the grammar

b) Write and explain closure properties of Context Free Languages. [5+5]

OR

7.a) State the Pumping Lemma for Context Free Languages.

b) Design Push down Automata for the language $L = \{a^n b^{2n} | n \ge 1\}$. [5+5]

WWW.MANARESULTS.CO.IN

8.a)	Design Turing Machine for the Language L={ $\mathbf{a}^{\mathbf{n}} \mathbf{b}^{\mathbf{n}} \mathbf{c}^{\mathbf{n}}/\mathbf{n} \ge 1$ }	
b)	List the Closure properties of recursive Languages.	[6+4]
	OR	
9.a)	Design Turing Machine to compute the function n!	
b)	Design TM for performing proper subtraction of two numbers.	[5+5]
10.a)	Briefly write about Universal Turning Machine (UTM).	
b)	What do you mean by NP Complete? List any 6 NP Complete Problems.	[4+6]
	OR	
11.a)	Discuss about turing Reducibility.	
b)	Write about:	
	i) Post Correspondence Problem	
	ii) Halting problem of TM.	[3+7]

---ooOoo---

Code No: 114AG

R13

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year II Semester Examinations, December - 2019 FORMAL LANGUAGES AND AUTOMATA THEORY

(Computer Science and Engineering)

Time: 3 Hours Max. Marks: 75

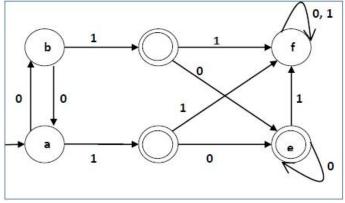
Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit.

Each question carries 10 marks and may have a, b, c as sub questions.

PART- A


		(25 Marks)
1.a)	Define the terms: Strings, Finite State Machine.	[2]
b)	Write down the differences between Moore Machines and Mealy Machines?	[3]
c)	State the applications of regular languages.	[2]
d)	Write down the pumping lemma of regular sets.	[3]
e)	Define Greiback Normal Form.	[2]
f)	What is the ambiguity in CFG?	[3]
g)	List out several types of Turing Machines.	[2]
h)	Discuss about Church's Hypothesis in brief.	[3]
i)	What are Universal Turing Machines?	[2]
j)	Briefly write about Turing Machine halting problem.	[3]

PART-B

(50 Marks)

2.a) Construct DFA for the following: $L=\{w \mid w \text{ has both an even number of } 0\text{'s and even number of } 1\text{'s } \}$.

b) Minimize the following DFA using equivalence theorem. [5+5]

OR

- 3.a) Construct the equivalent DFA for the NFA which accepts the language (a/b)*abb.
 - b) Design a Moore Machine to determine the residue mod 5 for each binary string treated as integer. [5+5]
- 4.a) Prove or disprove the following for regular expressions r, s, and t.
 - i) (r + s)t = rt + st
- ii) (rs + r)*r = r(sr + r)*
- b) Write a detail note on the closure properties of regular sets.

[5+5]

5.a) b)	Obtain a CFG to generate unequal number of a's and b's.	[5+5]
6.a) b)	Construct a grammar in CNF of the language $L=\{a^n b^m a^n \mid n \ge 0, m \ge 1\}$. Prove the following grammar is ambiguous: $S \to aS \mid aSbS \mid \epsilon$.	[5+5]
7 ~)	OR	
7.a)	Construct the PDA to the following grammar:	
	$S \rightarrow AB$ $A \rightarrow BS/b$	
	$A \rightarrow BS/0$ $B \rightarrow SA/a$	
b)	List out the properties of PDA.	[5+5]
8.	Design a T.M for copying of information from one place to the other place. Make necessary assumptions and discuss its functioning. OR	all the [10]
9.a)	Design a TM to compute <i>n mod 2</i> .	
b)	Construct a Turing Machine that accepts those strings beginning with a '1'.	[5+5]
10.a)	Explain briefly about Turing reducibility.	
b)	Explain about post correspondence problem in detail.	[5+5]
	OR	
11.	Discuss briefly about decidability and undecidability problems.	[10]

---ooOoo---

Code No: 114AG

R13

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

B.Tech II Year II Semester Examinations, May - 2017 FORMAL-LANGUAGES AND AUTOMATA THEORY

(Computer Science and Engineering)

Time: 3 Hours

Max. Marks: 75

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART- A

(25 Marks) Define Transition Table. [2] 1.a) [3] Explain the difference between DFA and NFA. b) Construct CFG to generate strings with any number of 1's. [2] c) Explain Leftmost Derivation with an example. [3] Construct PDA for the language $L = \{a^m b^m c^n \mid m, n \ge 1\}$ [2] Define Ambiguity in CFG with an example. [3] f) Explain about Turing Machine. [2] g) Write a short note on Recursive languages. [3] h) [2] List the properties of type-3 grammar. i) Define Context-sensitive grammar. [3] i)

PART-B

(50 Marks)

- 2.a) Construct NFA with ε which accepts a language consisting the strings of any number of 0's followed by any number of 1's followed by any number of 2's.
 - b) Check whether the following two FSM's are equivalent.

[5+5]

M1	0	1
→A	В	D
В	A	c
С	D	В
(D)	С	Α

M2	0	1
\rightarrow P $^{\circ}$	(R)	R
Q	R	P
R	Р	Q

OR

- 3.a) Define Moore and Mealy machines with examples.
- b) Design FA to accept string with 'a' and 'b' such that the number of a's are divisible by 3. [5+5]
- 4.a) Construct the left linear grammar for the language (0+1)*00(0+1)*.
 - b) Apply pumping lemma for the language L={aⁿ/n is prime} and prove that it is not regular. [5+5]

OR

26	2	26	26	26	26	26	26
	5.	Design a F.a.	A for the following	ng Languages			
26	_	b) (0+1)*1 c) (0*11*+	1012.	26	26	20 [3+	3+4]
	6.a)	Find the Gl S \rightarrow AA a A \rightarrow SS b		the following			
	b)	Convert th		mmar to a PDA	that accepts the	e language by e	mpty
26		stack S→0S1 A A→1A0 S	E. 20	20 OR	26	26 [5	+5]20
	7.a)			from the followi	ng grammar		
		$S \rightarrow aA \mid a$ $A \rightarrow aB$ $B \rightarrow a \mid Aa$					
26	b)	$C \rightarrow cCD$ $D \rightarrow ddd$ $Construct$	20 CFG for the PD	20 A M =({q ₀ ,q ₁ }.	26 (0.1): {R.Z ₀ }:	δ , q_0 , Z_0 , Φ) and	26 1 δ is
- 13	,	given by $\delta(q_0, 1, Z_0) = \delta(q_0, 1, R) = 0$ $\delta(q_0, 0, R) = 0$ $\delta(q_1, 0, Z_0) = 0$	(q ₀ ,RZ ₀) (q ₀ ,RR) (q ₁ ,R)	~ Č		20	200
20		$\delta(q_0, \varepsilon, Z_0)$		20	20	20 ₁₅	+51
		$\delta(q_1,1,R)=$			D	Ť.	121
	8.a) b)	Design a T Design a T	uring Machine to the Machine to recognize to	o accept L={WV the language L= OR	$V^{R} \mid W \text{ is in } (a+b)$ $\{1^{n}2^{n}3^{n} \mid n \ge 1\}.$		+5]
~ (9.a)				ntaining equal nu	imber of 0's and	1's. +5]
Z 0	b)	Design 1 IV	I that accepts the	ranguage oo .			(3) (2)
	10.a) b)		nomsky hierarch t note on NP- ha	y of Languages. rd and NP-comp OR	lete problem.	[5	+5]
	11.a) b)		out universal tur t's corresponder	ring Machine.	show that it is ur	ndecidable. [5	+5]
20	Ž.	26	20	00000	20	20	20

www.ManaResults.co.in